Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 51(10): 1391-1402, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37524541

RESUMO

Numerous biomedical applications have been described for liver-humanized mouse models, such as in drug metabolism or drug-drug interaction (DDI) studies. However, the strong enlargement of the bile acid (BA) pool due to lack of recognition of murine intestine-derived fibroblast growth factor-15 by human hepatocytes and a resulting upregulation in the rate-controlling enzyme for BA synthesis, cytochrome P450 (CYP) 7A1, may pose a challenge in interpreting the results obtained from such mice. To address this challenge, the human fibroblast growth factor-19 (FGF19) gene was inserted into the Fah-/- , Rag2-/- , Il2rg-/- NOD (FRGN) mouse model, allowing repopulation with human hepatocytes capable of responding to FGF19. While a decrease in CYP7A1 expression in human hepatocytes from humanized FRGN19 mice (huFRGN19) and a concomitant reduction in BA production was previously shown, a detailed analysis of the BA pool in these animals has not been elucidated. Furthermore, there are sparse data on the use of this model to assess potential clinical DDI. In the present work, the change in BA composition in huFRGN19 compared with huFRGN control animals was systematically evaluated, and the ability of the model to recapitulate a clinically described CYP3A4-mediated DDI was assessed. In addition to a massive reduction in the total amount of BA, FGF19 expression in huFRGN19 mice resulted in significant changes in the profile of various primary, secondary, and sulfated BAs in serum and feces. Moreover, as observed clinically, administration of the pregnane X receptor agonist rifampicin reduced the oral exposure of the CYP3A4 substrate triazolam. SIGNIFICANCE STATEMENT: Transgenic expression of FGF19 normalizes the unphysiologically high level of bile acids in a chimeric liver-humanized mouse model and leads to massive changes in bile acid composition. These adaptations could overcome one of the potential impediments in the use of these mouse models for drug-drug interaction studies.


Assuntos
Ácidos e Sais Biliares , Citocromo P-450 CYP3A , Camundongos , Humanos , Animais , Ácidos e Sais Biliares/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Camundongos Endogâmicos NOD , Fígado/metabolismo , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/metabolismo , Interações Medicamentosas
2.
Drug Metab Dispos ; 50(7): 980-988, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35545257

RESUMO

Quantitative assessment of hepatic clearance (CLH) of drugs is critical to accurately predict human dose and drug-drug interaction (DDI) liabilities. This is challenging for drugs that involve complex transporter-enzyme interplay. In this study, we demonstrate this interplay in the CLH and DDI effect in the presence of CYP3A4 perpetrator for pevonedistat using both the conventional clearance model (CCM) and the extended clearance model (ECM). In vitro metabolism and hepatocyte uptake data showed that pevonedistat is actively transported into the liver via multiple uptake transporters and metabolized predominantly by CYP3A4 (88%). The active uptake clearance (CLact,inf) and passive diffusion clearance (CLdiff,inf) were 21 and 8.7 ml/min/kg, respectively. The CLact,inf was underpredicted as Empirical Scaling Factor of 13 was needed to recover the in vivo plasma clearance (CLplasma). Both CCM and ECM predicted CLplasma of pevonedistat reasonably well (predicted CLplasma of 30.8 (CCM) and 32.1 (ECM) versus observed CLplasma of 32.2 ml/min/kg). However, both systemic and liver exposures in the presence of itraconazole were well predicted by ECM but not by CCM (predicted pevonedistat plasma area under the concentration-time curve ratio (AUCR) 2.73 (CCM) and 1.23 (ECM))., The ECM prediction is in accordance with the observed clinical DDI data (observed plasma AUCR of 1.14) that showed CYP3A4 inhibition did not alter pevonedistat exposure systemically, although ECM predicted liver AUCR of 2.85. Collectively, these data indicated that the hepatic uptake is the rate-determining step in the CLH of pevonedistat and are consistent with the lack of systemic clinical DDI with itraconazole. SIGNIFICANCE STATEMENT: In this study, we successfully demonstrated that the hepatic uptake is the rate-determining step in the CLH of pevonedistat. Both the conventional and extended clearance models predict CLplasma of pevonedistat well however, only the ECM accurately predicted DDI effect in the presence of itraconazole, thus providing further evidence for the lack of DDI with CYP3A4 perpetrators for drugs that involve complex transporter-enzyme interplay as there are currently not many examples in the literature except prototypical OATP substrate drugs.


Assuntos
Citocromo P-450 CYP3A , Itraconazol , Ciclopentanos , Citocromo P-450 CYP3A/metabolismo , Humanos , Itraconazol/metabolismo , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Pirimidinas
3.
Drug Metab Dispos ; 50(7): 989-997, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35504658

RESUMO

Metabolism and disposition of pevonedistat, an investigational, first-in-class inhibitor of the NEDD8-activating enzyme (NAE), were characterized in patients with advanced solid tumors after intravenous infusion of [14C]pevonedistat at 25 mg/m2 (∼60-85 µCi radioactive dose). More than 94% of the administered dose was recovered, with ∼41% and ∼53% of drug-related material eliminated in urine and feces, respectively. The metabolite profiles of [14C]pevonedistat were established in plasma using an accelerator mass spectrometer and excreta with traditional radiometric analysis. In plasma, unchanged parent drug accounted for approximately 49% of the total drug-related material. Metabolites M1 and M2 were major (>10% of the total drug-related material) circulating metabolites and accounted for approximately 15% and 22% of the drug-related material, respectively. Unchanged [14C]pevonedistat accounted for approximately 4% and 17% of the dose in urine and feces, respectively. Oxidative metabolites M1, M2, and M3 appeared as the most abundant drug-related components in the excreta and represented approximately 27%, 26%, and 15% of the administered dose, respectively. Based on the unbound plasma exposure in cancer patients and in vitro NAE inhibition, the contribution of metabolites M1 and M2 to overall in vivo pharmacological activity is anticipated to be minimal. The exposure to these metabolites was higher at safe and well tolerated doses in rat and dog (the two preclinical species used in toxicology evaluation) plasma than that observed in human plasma. Reaction phenotyping studies revealed that CYP3A4/5 are primary enzymes responsible for the metabolic clearance of pevonedistat. SIGNIFICANCE STATEMENT: This study details the metabolism and clearance mechanisms of pevonedistat, a first-in-class NEDD8-activating enzyme inhibitor, after intravenous administration to patients with cancer. Pevonedistat is biotransformed to two major circulating metabolites with higher exposure in nonclinical toxicological species than in humans. The pharmacological activity contribution of these metabolites is minimal compared to the overall target pharmacological effect of pevonedistat. Renal clearance was not an important route of excretion of unchanged pevonedistat (∼4% of the dose).


Assuntos
Neoplasias , Pirimidinas , Administração Oral , Animais , Ciclopentanos , Cães , Inibidores Enzimáticos/uso terapêutico , Fezes , Infusões Intravenosas , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ratos
4.
Eur J Drug Metab Pharmacokinet ; 47(3): 371-386, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35157234

RESUMO

BACKGROUND AND OBJECTIVE: Felcisetrag (previously TAK-954 or TD-8954) is a highly selective and potent 5-HT4 receptor agonist in clinical development for prophylaxis and treatment of postoperative gastrointestinal dysfunction (POGD). The rat, dog, and human absorption, distribution, metabolism, and excretion (ADME) properties of felcisetrag were investigated. METHODS: The metabolism and victim and perpetrator drug interaction potentials towards cytochrome P450s (CYP) and transporters were determined using in vitro models. The excretion, metabolite profile, and pharmacokinetics were determined during unlabeled and radiolabeled ADME studies in rat and dog for comparison with human. Due to a low clinical dose (0.5 mg) and radioactivity (~ 1.5 µCi), a combination of liquid scintillation counting and accelerator mass spectrometry was used for analysis of samples in this study. RESULTS: The ADME properties, including metabolite profile, for felcisetrag are generally conserved across species. Felcisetrag is primarily cleared through renal excretion (0.443) and metabolism in humans (0.420), with intact parent as the predominant species in circulation. There are multiple metabolites, each representing < 10% of the circulating radioactivity, confirming no metabolites in safety testing (MIST) liabilities. Metabolites were also detected in animals. The potential for major CYP- and transporter-based drug-drug interaction (DDI) of felcisetrag as a victim or perpetrator is considered to be low. CONCLUSIONS: Felcisetrag is primarily cleared in humans through renal excretion. Although the metabolism of felcisetrag is primarily through CYP3A, the potential for clinically relevant DDI as a victim is significantly reduced as metabolism plays a minor role in the overall clearance.


Assuntos
Sistema Enzimático do Citocromo P-450 , Serotonina , Animais , Cães , Interações Medicamentosas , Humanos , Ratos
5.
Drug Metab Dispos ; 48(3): 217-229, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31911485

RESUMO

Alisertib (MLN8237) is an investigational, orally available, selective aurora A kinase inhibitor in clinical development for the treatment of solid tumors and hematologic malignancies. This metabolic profiling analysis was conducted as part of a broader phase 1 study evaluating mass balance, pharmacokinetics, metabolism, and routes of excretion of alisertib following a single 35-mg dose of [14C]alisertib oral solution (∼80 µCi) in three patients with advanced malignancies. On average, 87.8% and 2.7% of the administered dose was recovered in feces and urine, respectively, for a total recovery of 90.5% by 14 days postdose. Unchanged [14C]alisertib was the predominant drug-related component in plasma, followed by O-desmethyl alisertib (M2), and alisertib acyl glucuronide (M1), which were present at 47.8%, 34.6%, and 12.0% of total plasma radioactivity. In urine, of the 2.7% of the dose excreted, unchanged [14C]alisertib was a negligible component (trace), with M1 (0.84% of dose) and glucuronide conjugate of hydroxy alisertib (M9; 0.66% of dose) representing the primary drug-related components in urine. Hydroxy alisertib (M3; 20.8% of the dose administered) and unchanged [14C]alisertib (26.3% of the dose administered) were the major drug-related components in feces. In vitro, oxidative metabolism of alisertib was primarily mediated by CYP3A. The acyl glucuronidation of alisertib was primarily mediated by uridine 5'-diphospho-glucuronosyltransferase 1A1, 1A3, and 1A8 and was stable in 0.1 M phosphate buffer and in plasma and urine. Further in vitro evaluation of alisertib and its metabolites M1 and M2 for cytochrome P450-based drug-drug interaction (DDI) showed minimal potential for perpetrating DDI with coadministered drugs. Overall, renal elimination played an insignificant role in the disposition of alisertib, and metabolites resulting from phase 1 oxidative pathways contributed to >58% of the alisertib dose recovered in urine and feces over 192 hours postdose. SIGNIFICANCE STATEMENT: This study describes the primary clearance pathways of alisertib and illustrates the value of timely conduct of human absorption, distribution, metabolism, and excretion studies in providing guidance to the clinical pharmacology development program for oncology drugs, for which a careful understanding of sources of exposure variability is crucial to inform risk management for drug-drug interactions given the generally limited therapeutic window for anticancer drugs and polypharmacy that is common in cancer patients.


Assuntos
Aurora Quinase A/metabolismo , Azepinas/metabolismo , Biotransformação/fisiologia , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Pirimidinas/metabolismo , Administração Oral , Idoso , Antineoplásicos/metabolismo , Citocromo P-450 CYP3A/metabolismo , Fezes , Feminino , Glucuronídeos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
6.
Invest New Drugs ; 37(4): 666-673, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30397836

RESUMO

Aims This two-part, phase I study evaluated the mass balance, excretion, pharmacokinetics and safety of the investigational aurora A kinase inhibitor, alisertib, in three patients with advanced malignancies. Methods Part A; patients received a single 35-mg dose of [14C]-alisertib oral solution (~80 µCi total radioactivity [TRA]). Serial blood, urine, and fecal samples were collected up to 336 h post-dose for alisertib mass balance and pharmacokinetics in plasma and urine by liquid chromatography-tandem mass spectrometry, and mass balance/recovery of [14C]-radioactivity in urine and feces by liquid scintillation counting. Part B; patients received non-radiolabeled alisertib 50 mg as enteric-coated tablets twice-daily for 7 days in 21-day cycles. Results In part A, absorption was fast (median plasma Tmax, 1 h) for alisertib and TRA. Mean plasma t1/2 for alisertib and TRA were 23.4 and 42.0 h, respectively. Mean plasma alisertib/TRA AUC0-inf ratio was 0.45, indicating presence of alisertib metabolites in circulation. Mean TRA blood/plasma AUC0-last ratio was 0.60, indicating preferential distribution of drug-related material in plasma. On average, 87.8% and 2.7% of administered radioactivity was recovered in feces and urine, respectively (total recovery, 90.5% by 14 days post-dose). In part B, patients received a median 3 cycles of alisertib. The most common any-grade adverse events were fatigue and alopecia. Conclusions Findings suggest that alisertib is eliminated mainly via feces, consistent with hepatic metabolism and biliary excretion of drug-related material. Further investigation of alisertib pharmacokinetics in patients with moderate-severe hepatic impairment is warranted to inform dosing recommendations in these patient populations.


Assuntos
Antineoplásicos/farmacocinética , Aurora Quinase A/antagonistas & inibidores , Azepinas/farmacocinética , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Pirimidinas/farmacocinética , Administração Oral , Idoso , Antineoplásicos/efeitos adversos , Antineoplásicos/sangue , Antineoplásicos/urina , Azepinas/efeitos adversos , Azepinas/sangue , Azepinas/urina , Fezes/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/urina , Pirimidinas/efeitos adversos , Pirimidinas/sangue , Pirimidinas/urina
7.
Cancer Chemother Pharmacol ; 82(5): 803-814, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30128949

RESUMO

PURPOSE: This metabolite profiling and identification analysis (part of a phase I absorption, distribution, metabolism, and excretion study) aimed to define biotransformation pathways and evaluate associated inter-individual variability in four patients with advanced solid tumors who received [14C]-ixazomib. METHODS: After administration of a single 4.1-mg oral dose of [14C]-ixazomib (total radioactivity [TRA] ~ 500 nCi), plasma (at selected timepoints), urine, and fecal samples were collected before dosing and continuously over 0-168-h postdose, followed by intermittent collections on days 14, 21, 28, and 35. TRA analysis and metabolite profiling were performed using accelerator mass spectrometry. Radiolabeled metabolites were identified using liquid chromatography/tandem mass spectrometry. RESULTS: Metabolite profiles were similar in plasma, urine, and feces samples across the four patients analyzed. All metabolites identified were de-boronated. In AUC0-816 h time-proportional pooled plasma, ixazomib (54.2% of plasma TRA) and metabolites M1 (18.9%), M3 (10.6%), and M2 (7.91%), were the primary components identified. M1 was the major metabolite, contributing to 31.1% of the 76.2% of the total dose excreted in urine and feces over 0-35-day postdose. As none of the identified metabolites had a boronic acid moiety, they are unlikely to be pharmacologically active. CONCLUSIONS: Hydrolytic metabolism in conjunction with oxidative deboronation appears to be the principal process in the in vivo biotransformation pathways of ixazomib. The inference of formation-rate-limited clearance of ixazomib metabolites and the inferred lack of pharmacologic activity of identified circulating metabolites provides justification for use of parent drug concentrations/systemic exposure in clinical pharmacology analyses.


Assuntos
Antineoplásicos/sangue , Antineoplásicos/urina , Compostos de Boro/sangue , Compostos de Boro/urina , Fezes/química , Glicina/análogos & derivados , Neoplasias/metabolismo , Administração Oral , Antineoplásicos/administração & dosagem , Área Sob a Curva , Biotransformação , Compostos de Boro/administração & dosagem , Radioisótopos de Carbono , Feminino , Glicina/administração & dosagem , Glicina/sangue , Glicina/urina , Humanos , Masculino , Metaboloma/efeitos dos fármacos , Neoplasias/tratamento farmacológico
8.
Invest New Drugs ; 36(3): 407-415, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28932928

RESUMO

This two-part, phase I study evaluated the mass balance, excretion, pharmacokinetics (PK), and safety of ixazomib in patients with advanced solid tumors. In Part A of the study, patients received a single 4.1 mg oral solution dose of [14C]-ixazomib containing ~500 nCi total radioactivity (TRA), followed by non-radiolabeled ixazomib (4 mg capsule) on days 14 and 21 of the 35-day PK cycle. Patients were confined to the clinic for the first 168 h post dose and returned for 24 h overnight clinic visits on days 14, 21, 28, and 35. Blood, urine, and fecal samples were collected during Part A to assess the mass balance (by accelerator mass spectrometry), excretion, and PK of ixazomib. During Part B of the study, patients received non-radiolabeled ixazomib (4 mg capsules) on days 1, 8, and 15 of 28-day cycles. After oral administration, ixazomib was rapidly absorbed with a median plasma Tmax of 0.5 h and represented 70% of total drug-related material in plasma. The mean total recovery of administered TRA was 83.9%; 62.1% in urine and 21.8% in feces. Only 3.23% of the administered dose was recovered in urine as unchanged drug up to 168 h post dose, suggesting that most of the TRA in urine was attributable to metabolites. All patients experienced a treatment-emergent adverse event, which most commonly involved the gastrointestinal system. These findings suggest that ixazomib is extensively metabolized, with urine representing the predominant route of excretion of drug-related material.Trial ID: ClinicalTrials.gov # NCT01953783.


Assuntos
Compostos de Boro/farmacocinética , Compostos de Boro/uso terapêutico , Radioisótopos de Carbono/farmacocinética , Glicina/análogos & derivados , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores de Proteassoma/farmacocinética , Inibidores de Proteassoma/uso terapêutico , Administração Oral , Idoso , Compostos de Boro/administração & dosagem , Compostos de Boro/sangue , Radioisótopos de Carbono/administração & dosagem , Radioisótopos de Carbono/sangue , Fezes , Feminino , Glicina/administração & dosagem , Glicina/sangue , Glicina/farmacocinética , Glicina/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Inibidores de Proteassoma/administração & dosagem , Inibidores de Proteassoma/sangue , Radioatividade , Resultado do Tratamento , Urina
9.
Clin Pharmacol Drug Dev ; 5(3): 180-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27163496

RESUMO

This study evaluated the absorption, distribution, and excretion of orteronel, an investigational, nonsteroidal, reversible, selective 17,20-lyase inhibitor. Six healthy male subjects received a single 400-mg dose of radiolabeled [(14) C]-orteronel (18.5 kBq). The pharmacokinetics of [(14) C]-radioactivity, orteronel, and the primary metabolite M-I were characterized by ultra-performance liquid chromatography-tandem mass spectrometry, and mass balance recovery of [(14) C]-radioactivity was determined by liquid scintillation counting and accelerator mass spectrometry. Median time to maximum observed concentration of [(14) C]-radioactivity was 2.5 hours (plasma/whole blood) and of orteronel was 1 hour (plasma). Mean terminal half-life for [(14) C]-radioactivity in plasma and whole blood was 9.46 and 7.39 hours, respectively. For [(14) C]-radioactivity, the geometric mean whole blood-to-plasma ratios for maximum observed plasma/whole-blood concentration, area under the plasma concentration-time curve from time 0 to last quantifiable concentration (AUC0-last ), and AUC0-inf (AUC from time 0 to infinity) were 1.04, 0.92, and 0.93, respectively. Dose recovery accounted for 95.9% of the administered orteronel dose; the majority of excretion occurred by 96 hours postdose. The principal excretion route was via urine (mean, 77.5%; including 49.7% unchanged drug and 16.3% M-I) compared with 18.4% via feces. Three mild adverse events were reported; none were considered serious or related to orteronel.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacocinética , Imidazóis/farmacocinética , Naftalenos/farmacocinética , Adulto , Área Sob a Curva , Cromatografia Líquida , Inibidores das Enzimas do Citocromo P-450/efeitos adversos , Meia-Vida , Humanos , Imidazóis/efeitos adversos , Masculino , Naftalenos/efeitos adversos , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Espectrometria de Massas em Tandem , Adulto Jovem
10.
Drug Metab Lett ; 10(1): 22-37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26031460

RESUMO

UNLABELLED: MLN3897 is a small molecule antagonist of the C-C chemokine receptor-1. Since preclinical studies showed that the molecule was metabolized into two halves, the metabolism, excretion, and pharmacokinetics of MLN3897 were investigated in humans using MLN3897 14C-radiolabeled either on the chlorophenyl (CP) or the tricyclic (TC) half of MLN3897 after an oral dose. OBJECTIVE: To evaluate the mass balance, metabolism and pharmacokinetics of MLN3897 in two cohorts of six randomized healthy subjects. METHOD: After receiving informed consent, subjects were dosed after an overnight fast of 10-hours followed by at least 4- hours after dosing on day-1. Each cohort received a single 29 mg oral dose of either the CP or the TC as an oral solution in water. Serial blood samples, urine and feces were collected over a 10-day period post-dose. RESULTS: For both radiolabeled moieties, 55-59% of the dose was recovered in feces and 32% recovered in urine. MLN3897 was metabolized extensively in humans, with minor amounts of intact MLN3897 detected in the urine and feces. N-oxidation of the tricyclic moiety (M28) and N-dealkylation of the piperidinyl moiety were the primary metabolic pathways leading to further formation of the carboxylic acid metabolite (M19) and the (4-(4-chlorophenyl)-3,3- dimethylpiperidin-4-ol) metabolite (M40). Oxidative metabolites M11, M19, M28, M44 were present at >10% of the total circulating radioactivity and also at >25% of MLN3897 exposure. Metabolites resulting from the chlorophenyl-labeled moiety (M40) had significantly more systemic exposure compared to the tricyclic-labeled moiety (M19).


Assuntos
Anti-Inflamatórios/farmacocinética , Receptores CCR1/antagonistas & inibidores , Administração Oral , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/sangue , Anti-Inflamatórios/urina , Benzoxepinas/administração & dosagem , Benzoxepinas/sangue , Benzoxepinas/farmacocinética , Benzoxepinas/urina , Biotransformação , Ácidos Carboxílicos/metabolismo , Remoção de Radical Alquila , Fezes/química , Feminino , Humanos , Eliminação Intestinal , Espectroscopia de Ressonância Magnética , Masculino , Oxirredução , Piridinas/administração & dosagem , Piridinas/sangue , Piridinas/farmacocinética , Piridinas/urina , Ratos Sprague-Dawley , Receptores CCR1/metabolismo , Eliminação Renal
11.
Drug Metab Dispos ; 34(4): 702-8, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16443666

RESUMO

Bortezomib (Velcade, PS-341), a dipeptidyl boronic acid, is a first-in-class proteasome inhibitor approved in 2003 for the treatment of multiple myeloma. In a preclinical toxicology study, bortezomib-treated rats resulted in liver enlargement (35%). Ex vivo analyses of the liver samples showed an 18% decrease in cytochrome P450 (P450) content, a 60% increase in palmitoyl coenzyme A beta-oxidation activity, and a 41 and 23% decrease in CYP3A protein expression and activity, respectively. Furthermore, liver samples of bortezomib-treated rats had little change in CYP2B and CYP4A protein levels and activities. To address the likelihood of clinical drug-drug interactions, the P450 inhibition potential of bortezomib and its major deboronated metabolites M1 and M2 and their dealkylated metabolites M3 and M4 was evaluated in human liver microsomes for the major P450 isoforms 1A2, 2C9, 2C19, 2D6, and 3A4/5. Bortezomib, M1, and M2 were found to be mild inhibitors of CYP2C19 (IC(50) approximately 18.0, 10.0, and 13.2 microM, respectively), and M1 was also a mild inhibitor of CYP2C9 (IC(50) approximately 11.5 microM). However, bortezomib, M1, M2, M3, and M4 did not inhibit other P450s (IC(50) values > 30 microM). There also was no time-dependent inhibition of CYP3A4/5 by bortezomib or its major metabolites. Based on these results, no major P450-mediated clinical drug-drug interactions are anticipated for bortezomib or its major metabolites. To our knowledge, this is the first report on P450-mediated drug-drug interaction potential of proteasome inhibitors or boronic acid containing therapeutics.


Assuntos
Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Microssomos Hepáticos/enzimologia , Pirazinas/farmacologia , Animais , Antineoplásicos/metabolismo , Bortezomib , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Cinética , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Tamanho do Órgão , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...